Uniformity of the Uncovered Set of Random Walk and Cutoff for Lamplighter Chains

ثبت نشده
چکیده

We show that the measure on markings of Zn, d ≥ 3, with elements of {0,1} given by i.i.d. fair coin flips on the range R of a random walk X run until time T and 0 otherwise becomes indistinguishable from the uniform measure on such markings at the threshold T = 1 2 Tcov(Z d n). As a consequence of our methods, we show that the total variation mixing time of the random walk on the lamplighter graph Z2 ≀Z d n, d≥ 3, has a cutoff with threshold 1 2 Tcov(Z d n). We give a general criterion under which both of these results hold; other examples for which this applies include bounded degree expander families, the intersection of an infinite supercritical percolation cluster with an increasing family of balls, the hypercube and the Caley graph of the symmetric group generated by transpositions. The proof also yields precise asymptotics for the decay of correlation in the uncovered set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Eigenspaces of Lamplighter Random Walks and Percolation Clusters on Graphs

We show that the Plancherel measure of the lamplighter random walk on a graph coincides with the expected spectral measure of the absorbing random walk on the Bernoulli percolation clusters. In the subcritical regime the spectrum is pure point and we construct a complete set of finitely supported eigenfunctions.

متن کامل

On the Spectrum of Lamplighter Groups and Percolation Clusters

Let G be a finitely generated group and X its Cayley graph with respect to a finite, symmetric generating set S. Furthermore, let H be a finite group and H ≀G the lamplighter group (wreath product) over G with group of “lamps” H. We show that the spectral measure (Plancherel measure) of any symmetric “switch–walk–switch” random walk on H ≀G coincides with the expected spectral measure (integrat...

متن کامل

Acceleration of lamplighter random walks

Suppose we are given an infinite, finitely generated group G and a transient random walk with bounded range on the wreath product (Z/2Z) ≀ G, such that its projection on G is transient. This random walk can be interpreted as a lamplighter random walk, where there is a lamp at each element of G, which can be switched on and off, and a lamplighter walks along G and switches lamps randomly on and ...

متن کامل

Cutoff Phenomena for Random Walks on Random Regular Graphs

The cutoff phenomenon describes a sharp transition in the convergence of a family of ergodic finite Markov chains to equilibrium. Many natural families of chains are believed to exhibit cutoff, and yet establishing this fact is often extremely challenging. An important such family of chains is the random walk on G(n, d), a random d-regular graph on n vertices. It is well known that the spectral...

متن کامل

The Poisson Boundary of Lamplighter Random Walks on Trees

Let Tq be the homogeneous tree with degree q + 1 ≥ 3 and G a finitely generated group whose Cayley graph is Tq. The associated lamplighter group is the wreath product Zr ≀ G, where Zr is the cyclic group of order r. For a large class of random walks on this group, we prove almost sure convergence to a natural geometric boundary. If the probability law governing the random walk has finite first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012